
WBEM/CIM Management
Basic concepts and availability in Fedora

Red Hat

V́ıtězslav Crhonek <vcrhonek@redhat.com>

June 13, 2011

Part I

Basic concepts

What is WBEM?

1 Introduction
Management
DMTF

2 WBEM architecture
WBEM
CIM
Model Example
Object Path
CIM/XML encoding specification
CIM Operations over HTTP
Provider
Provider/CIM Server Interface
The WBEM Components

Section 1

Introduction

Introduction Management

Management

Common and flexible way of managing a collection of
heterogenous devices and services

Storage network, electrical power supply, desktop computing,
telecomunication industries, etc.

System administration - configuration, backup, user
administration, security policies, performance monitoring,
problem determination, etc.

Introduction DMTF

DMTF

DMTF - Distributed Management Task Force

Industry body formed to lead the development, adoption, and
interoperability of management standards

˜160 member companies and organizations

DMTF board of directors is led by 15 companies (AMD,
Broadcom, CA, Cisco, Citrix Systems, EMC, Fujitsu, HP,
Huawei, IBM, Intel, Microsoft, Oracle; Red Hat and VMware)

http://www.dmtf.org/home

http://www.dmtf.org/home

Section 2

WBEM architecture

WBEM architecture WBEM

WBEM

WBEM (pronounced ”web-em”) - Web-Based Enterprise
Management is End-to-End interoperable management suite
designed by DMTF

Emerged in mid (1996) to late 1990s, primarily for managing
desktop systems, enterprise networks and E-business
infrastructure, in late 1990s it started to evolve into more
general-purpose management tool

Major goals:

Reduced Total Cost of Ownership - interoperable management
lowers the man-hours needed
Improved Time to Market - using standards
Reduced Development Time - existing information models can
be used or expanded upon
Support for other management solutions - migration support
for SNMP, DMI, etc.

WBEM architecture WBEM

WBEM components

WBEM consists of:

CIM specification (data modelling process and language)
CIM Server (broker between operators and managed systems)
CIM/XML encoding specification (representation of CIM in
XML, encoding commands and responses)
CIM over HTTP access (transporting mechanisms for carrying
commands and responses across a network)

Key difference between WBEM and traditional management
standards (e.g. SNMP, TMN):

Available modelling constructs (object-oriented language)
Clear separation of the interface used to acces information
from the model of the device being managed

http://www.dmtf.org/standards/wbem

http://www.dmtf.org/standards/wbem

WBEM architecture WBEM

WBEM Stack

CIM Client - a client that can format an XML document and send
an HTTP request
CIM Server (CIMOM) - an HTTP server that can decode XML and
interface with providers
Provider - a library that ”knows” about the device/service being
managed and can insteract with CIMOM

WBEM architecture CIM

CIM

CIM (Common Information Model) is language and methodology
for describing management data standardized by DMTF, composed
of a CIM Specification and CIM Schema
http://www.dmtf.org/standards/cim

http://www.dmtf.org/standards/cim

WBEM architecture CIM

CIM Specification

Describes the language, naming, Meta Schema (formal
definition of the model - terms used to express the model and
their usage and semantics)

Basic elements of the Meta Schema are Classes, Properties
and Methods (also supports Indications and Associations as
types of Classes and References as types of Properties,
Qualifiers, Instances, etc.)

Defines the details for integration with other management
models (e.g. SNMP MIBs)

Model can be expressed graphically in UML (Unified
Modelling Language) or textually using a language called
”mof” (Managed Object Format)

WBEM architecture CIM

CIM Schema

Provides the actual model descriptions

Core Schema (essential classes) and Common Schema
(important classes for various applications - storage,
networking, desktop computing, etc.)

DMTF simultaneously publish both an ”Experimental” and a
”Final” version of the schema

Backward compatible (within same major version), can be
easily expanded

WBEM architecture Model Example

Model Examle - UML/MOF

c l a s s V e h i c l e {
[Key , D e s c r i p t i o n (

”The vendor ' s name o f t he v e h i c l e ”)]
S t r i n g Name ;

[Key , D e s c r i p t i o n (
”The V e h i c l e I d e n t i f i c a t i o n Number ”)]

S t r i n g VIN ;
[D e s c r i p t i o n (

”MPH o f th e v e h i c l e ”)]
U int8 Speed ;

} ;

c l a s s M o t o r c y c l e : V e h i c l e {
[D e s c r i p t i o n (

”Number o f w h e e l s ”)]
U int8 Wheels ;

} ;

WBEM architecture Model Example

Model Example - MOF
i n s t a n c e o f V e h i c l e {

Name=”Ford Mustang GT” ;
VIN=”1FAFP90S45Y400167 ” ;

} ;

c l a s s Eng ine {
[Key , D e s c r i p t i o n (

” S e r i a l number o f t he e n g i n e ”)]
S t r i n g S e r i a l N u m b e r ;

[D e s c r i p t i o n (
”Name o f e n g i n e ”)]

S t r i n g Name ;
} ;

i n s t a n c e o f Eng ine {
S e r i a l N u m b e r = ”123902 A323 ” ;
Name = ”8 CYLINDERS 5 . 4 L i t e r s ” ;

} ;

[A s s o c i a t i o n]
c l a s s V e h i c l e E n g i n e {

[Key , Min (”1”) , Max (”1”) , D e s c r i p t i o n (
”The r e f e r e n c e to t he v e h i c l e . ”)]

V e h i c l e REF I n V e h i c l e ;
[Key , Min (”1”) , Max (”1”) , D e s c r i p t i o n (

”The r e f e r e n c e to t he e n g i n e . ”)]
Eng ine REF HasEngine ;

} ;

i n s t a n c e o f V e h i c l e E n g i n e {
I n V e h i c l e =” V e h i c l e . Name=\”Ford Mustang GT\” , VIN=\”1FAFP90S45Y400167 \” ” ;
HasEngine = ” Engine . S e r i a l N u m b e r =\”123902A323 \” ” ;

} ;

WBEM architecture Object Path

Object Path

Unique identifier for instances and classes

Combination of namespace, class name (and the values of all
keys in case of instances)

objectPath = <namespacePath>:<modelPath>

namespacePath

namespaceType - protocol or API and address (e.g.
http://10.34.24.224)
namespaceHandle - e.g. ”root/cimv2” (it’s not hiearchical, it’s
just one word)

modelPath =
<class>.<key>=<value>,...,<key>=<value>

WBEM architecture Object Path

Object Path - examples

Full name of Vehicle instance from previous example:
’http://localhost/root/sample:
Vehicle.Name="Ford Mustang GT",
VIN="1FAFP90S45Y400167"’
Full name of Linux UnixProcess instance might therefore be:
’http://localhost/root/cimv2:Linux UnixProcess.
CreationClassName="Linux UnixProcess",
CSCreationClassName="Linux ComputerSystem",
CSName="azrael2",Handle="2797",
OSCreationClassName="Linux OperatingSystem",
OSName="azrael2"’
Full name of Linux ComputerSystem class might be:
http://localhost/root/cimv2:Linux ComputerSystem
(just <key>=<value> clauses are omitted)

WBEM architecture CIM/XML encoding specification

CIM/XML encoding specification

Specifies maping of CIM to XML
No information is lost, vendors can distribute classes as XML

Model Example - XML

<INSTANCE CLASSNAME=” V e h i c l e ” >
<PROPERTY NAME=” Speed ” CLASSORIGIN=” V e h i c l e ” PROPAGATED=” t r u e ” TYPE=” u i n t 8 ”>

<QUALIFIER NAME=” D e s c r i p t i o n ” TYPE=” s t r i n g ” TRANSLATABLE=” t r u e ”>
<VALUE>MPH o f t h e v e h i c l e</VALUE>

</QUALIFIER>
</PROPERTY>
<PROPERTY NAME=”Name” CLASSORIGIN=” V e h i c l e ” TYPE=” s t r i n g ”>

<QUALIFIER NAME=”Key” TYPE=” b o o l e a n ” OVERRIDABLE=” f a l s e ”>
<VALUE>TRUE</VALUE>

</QUALIFIER>
<QUALIFIER NAME=” D e s c r i p t i o n ” TYPE=” s t r i n g ” TRANSLATABLE=” t r u e ”>

<VALUE>The vendor&apos ; s name o f t h e v e h i c l e</VALUE>
</QUALIFIER>

<VALUE>Ford Mustang GT</VALUE>
</PROPERTY>
<PROPERTY NAME=”VIN” CLASSORIGIN=” V e h i c l e ” TYPE=” s t r i n g ”>

<QUALIFIER NAME=”Key” TYPE=” b o o l e a n ” OVERRIDABLE=” f a l s e ”>
<VALUE>TRUE</VALUE>

</QUALIFIER>
<QUALIFIER NAME=” D e s c r i p t i o n ” TYPE=” s t r i n g ” TRANSLATABLE=” t r u e ”>

<VALUE>The V e h i c l e I d e n t i f i c a t i o n Number</VALUE>
</QUALIFIER>
<VALUE>1FAFP90S45Y400167</VALUE>

</PROPERTY>
</INSTANCE>

WBEM architecture CIM Operations over HTTP

CIM Operations over HTTP

Defines what a management application (CIM client) can do
with CIM, list of operations that a client might wish to
perform

Describes operations on classes, instances, qualifiers and
associations

Basicaly two kinds of methods:

Intrinsic methods - designed to be built into the CIM server,
oriented towards manipulation of the model itself (retrieve,
delete, create, enumerate, . . . generally manipulate classes,
instances, associations and qualifiers)
Extrinsic methods - operations carried out by a method
provider, which may do anything (shut the system down, bring
it up, perform any complex operation)

WBEM architecture CIM Operations over HTTP

Intrinsic methods

Class-Oriented:

GetClass, DeleteClass, EnumerateClasses,
EnumerateClassNames, (GetClassDefinition)
CreateClass, ModifyClass

Instance-Oriented:

GetInstance, CreateInstance, DeleteInstance, ModifyInstance,
EnumerateInstances, EnumerateInstanceName, GetProperty,
SetProperty

GetProperty and SetProperty are redundant, since
GetInstance and ModifyInstance both allow a subset of
properties (including one) to be specified

MethodX vs. MethodXNames - the former case returns whole
object, the latter case return only names (objectPath)

WBEM architecture Provider

Provider

Provider is ”driver”, interface between abstract model and
real hardware/software

Associted with dynamic entities (static entities can be defined
in the mof code)

Usually dynamic link library, one per class/association

Installed at specific path known to CIM Server

One library module can implement more than one type of
provider

WBEM architecture Provider

Types of provider

Method Providers - handle calls to extrinsic methods to
instances of classes

Instance Providers - handle operations with instances of
particular classes

Property Providers - handle getting and setting properties on
an instance

Association (Associator) Providers - handle associations
between classes or instances

Indication (Indicator) Providers - handle events and alarms
raised in the managed system

Query Providers - handle database-style queries

WBEM architecture Provider/CIM Server Interface

Provider/CIM Server Interface

Provider Protocol Adaptor

In early days defined by particular CIM Server implementation
(C++, Java)

Problem for small devices where it was necessary to write
providers in C

Native Provider Interface (NPI) emerged, superseded by CMPI

PPA is usually plug-in component of CIM Server now and
CMPI is supported

WBEM architecture Provider/CIM Server Interface

CMPI

CMPI - Common Manageability Programming Interface,
released by The Open Group

Defines a programming interface between a CIM Server and
providers

In C, header files enabled for C++, C++ utility macros allows
accessing the interface in C++ way

Allows to write providers without having specific CIM Server
libraries

Provide support for remote providers

Thread-safe, any number of providers in the same library
module

http://www.opengroup.org/tech/management/cmpi/

http://www.opengroup.org/tech/management/cmpi/

WBEM architecture The WBEM Components

The WBEM Components - big picture

Part II

Availability in Fedora

Packages description, Examples, Questions

3 Packages description
SBLIM Project
Packages overview
OpenPegasus
Small Footprint CIM Broker
WBEM Command Line Interface
CIM Schema
SBLIM Providers
SBLIM Test Suite

4 Examples

5 Questions?

Section 3

Packages description

Packages description SBLIM Project

SBLIM Project

SBLIM (pronounced ”sublime”) - Standards Based
Instrumentation for Manageability, initiated by IBM, is is an
umbrella project for a collection of Open Source systems
management tools to enable WBEM on Linux
CIMOMs are brokers, without any providers they have limited
functionality, SBLIM brings mainly these providers (but also
additional stuff)
SBLIM providers instrument:

Operating system, processes
File systems, Network
NFSv3, NFSv4, Syslog
Kernel parameters, SysFS

But also adds additional tools:

SBLIM TestSuite
WBEM client/server

http://sourceforge.net/projects/sblim/

http://sourceforge.net/projects/sblim/

Packages description Packages overview

Packages overview

CIM servers

OpenPegasus - tog-pegasus
Small Footprint CIM Broker - sblim-sfcb

CIM clients

WBEM Command Line Interface - sblim-wbemcli
Small Footprint CIM Client - sblim-sfcc
CIM Client for Java - sblim-cim-client, sblim-cim-client2

Providers

Base OS Instrumentation - sblim-cmpi-base
Filesystem and Volume Management Instrumentation - sblim-cmpi-fsvol
Network Instrumentation - sblim-cmpi-network
NFS Instrumentation - sblim-cmpi-nfsv3,4
Parameter Instrumentation - sblim-cmpi-params
RPM Instrumentation - sblim-cmpi-rpm
Sysfs Instrumentation - sblim-cmpi-sysfs
Syslog Instrumentation - sblim-cmpi-syslog
SMI-S standards based HBA CMPI Providers - sblim-smis-hba

Packages description Packages overview

Packages overview

Support and development

SBLIM Test Suite - sblim-testsuite
Performance data gatherer - sblim-gather
CIM Schema - cim-schema
SBLIM CMPI Provider Development Support -
sblim-cmpi-devel
Indication Helper - sblim-indication helper

WBEM System Management (WBEM-SMT)

Common functionality required by the task-specific resource
access layers of WBEM-SMT - sblim-tools-libra
WBEM-SMT DNS task - sblim-cmpi-dns
WBEM-SMT Samba task - sblim-cmpi-samba
WBEM-SMT DHCP task - sblim-cmpi-dhcp

Packages description OpenPegasus

OpenPegasus (tog-pegasus)

CIM server developed by The Open Group (vendor-neutral,
technology-neutral consortium)

Written in C++, under MIT license, portable

Released twice a year, parallel versions (currently 2.8.X, 2.9.X,
2.10.X, 2.11.X), formal development (PEPs - Project
Enhancement Proposals)

A lot of features, but eats resources - not very suitable for e.g.
embedded devices

http://www.openpegasus.org/

http://www.openpegasus.org/

Packages description OpenPegasus

OpenPegasus - basic commands

service tog-pegasus start/stop/...
cimserver

- tog-pegasus service, for the first time certificates are generated when
starting with init script, server listens on port 5988 (http) or 5989 (https)

osinfo

- prints information regarding the running operating system - good for
quick test, whether the service runs properly (OperatingSystemModule
must be enabled)

cimconfig

- manages tog-pegasus configuration properties

cimprovider

- manages registered CIM providers or CIM provider modules

Packages description OpenPegasus

OpenPegasus - basic commands

wbemexec

- simple CIM Client, can submit CIM requests encoded in XML to
a CIM Server

cimmof
cimmofl

- two versions of mof compiler, loads contetnt of mof file into the
repository, former command is CIM Client and passes compiled
output to CIM Server, the latter writes it directly into the
repository (no need of running CIM Server, but more dangerous
and meant mainly as debugging tool)

repository is placed in /var/lib/Pegasus/repository/

Packages description Small Footprint CIM Broker

Small Footprint CIM Broker (sblim-sfcb)

CIM server for resource-constrained and embedded
environments

Written in C, designed to be modular and lightweight

Useful for providers debugging:

SBLIM TRACE=[0..4] - level of trace (0 - no trace messages,
4 - all messages)
SBLIM TRACE FILE=/path/to/file - saving trace messages to
the file instead of printing them to STDERR

Packages description WBEM Command Line Interface

WBEM Command Line Interface
(sblim-wbemcli)

Command line CIM Client
Important options:

”-nl” - starts a new line for every property returned
”-dx” - shows XML communication between client and server
”-t” - adds array ([]), reference (&) and key property (#)
indicators to property names

./wbemcli.ind file (or any file specified via WBEMCLI IND) - can
hold scheme and host specification to reduce typing
myCimom: http://root:password@localhost:5988

Usage example:

wbemcli ei -nl myCimom/root/cimv2:CIM OperatingSystem

Packages description CIM Schema

CIM Schema (cim-schema)

cim-schema (MOF files)

cim-schema-docs (HTML schema description)

Latest version 2.29.0, released 3 May 2011

Required by sblim-sfcb, tog-pegasus ships schemata on his
own

Packages description SBLIM Providers

SBLIM Providers

Provider is interface between CIM Server and real HW/SW

Typical SBLIM provider consists from:

class/association specific libraries /usr/lib/cmpi
mof files and registration stuff /usr/share/%{name}
common libraries /usr/lib
documentation /usr/share/doc/%{name}-%{version}

Many of them have also -test subpackage

Packages description SBLIM Test Suite

SBLIM Test Suite (sblim-testsuite)

Performing ”hand-operated” tests of provider can become a
nightmare - test suite was developed
Allows to perform automated function verification tests against
installed provider
Aacts as CIM Client, uses sblim-wbemcli, used Perl and shell
scripting
Three types of tests:

Interface test - verifies proper implementation of all required
provider interfaces
Consistence test - checks if provider returns meaningful values
(compares them with script collected data)
Specification test - checks if the returned values follow the
specification (compares them with meta-information about the
model) - not implemented, moved to future;)

http://sblim.sourceforge.net/doc/SBLIMTestSuite.pdf

http://sblim.sourceforge.net/doc/SBLIMTestSuite.pdf

Section 4

Examples

Examples

Section 5

Questions?

Questions?

The end.
Thanks for listening.

	Basic concepts
	Introduction
	Management
	DMTF

	WBEM architecture
	WBEM
	CIM
	Model Example
	Object Path
	CIM/XML encoding specification
	CIM Operations over HTTP
	Provider
	Provider/CIM Server Interface
	The WBEM Components

	Availability in Fedora
	Packages description
	SBLIM Project
	Packages overview
	OpenPegasus
	Small Footprint CIM Broker
	WBEM Command Line Interface
	CIM Schema
	SBLIM Providers
	SBLIM Test Suite

	Examples
	Questions?

